Answer:
6.68 X 10^-11
Explanation:
From the second Ka, you can calculate pKa = -log (Ka2) = 6.187
The pH at the second equivalence point (8.181) will be the average of pKa2 and pKa3. So,
8.181 = (6.187 + pKa3) / 2
Solving gives pKa3 = 10.175, and Ka3 = 10^-pKa3 = 6.68 X 10^-11
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>
Answer: So when a Doppler radar detects a large rotating updraft that occurs inside a supercell, it is called a mesocyclone. It has smaller, tighter rotation than a mesocyclone.
Answer:
dS= 1.79*169.504
j/k = 303.41 j/k
Explanation:
Fe3O4(s) + 4H2(g) --> 3Fe (s)+ 4H2O(g)
dS(Fe3O4) =146.4 j/k
dS(H2) =130.684
dS(Fe) =27.78
dS(H2O) =188.825
dSrxn = dS[product]-dS[reactants]
= 3*dS(Fe)+ 4*dS(H2O)-[1*dS(Fe3O4)+ 4dS(H2)]
= [3*27.78 +4*188.825-146.4 -4*130.684] j/k = 169.504 j/k
This is the dS for 1mole Fe3O4
for 1.79 mols Fe3O4
dS= 1.79*169.504 j/k = 303.41 j/k
Answer:
false
Explanation
The chemical bonds were broken when creating the compound MgO.