Answer:
The answer, because i gotta
Explanation:
finish a challenge
Answer:
Force that the output plunger applies to the car; F2 = 3888N
Explanation:
For a hydraulic device, the relationship between the force and the area using Pascal's principle is;
F1/A1 = F2/A2
Where;
F1 is force applied to the input piston
F2 is force that the output plunger applies to the car
A1 is Area of input piston
A2 is area of larger piston
We are given;
R2/R1 = 9
So,R2 = 9R1
F1 = 48N
Area of input piston;
A1 = π(R1)²
Area of output piston;
A2 = π(9R1)²
Since, (F1/A1) = (F2/A2)
Thus;
F1/(π(R1)²) = F2/(π(9R1)²)
If we simplify, π(R1)² will cancel out to give;
F1 = F2/9²
Thus;
F2 = 9² x F1
Plugging in 48N for F1, we have;
F2 = 9² x 48
F2 = 81 x 48
F2 = 3888N
Answer:
According to the law of conservation of energy, energy cannot be created or destroyed, although it can be changed from one form to another. KE + PE = constant. A simple example involves a stationary car at the top of a hill. As the car coasts down the hill, it moves faster and so it’s kinetic energy increases and it’s potential energy decreases. On the way back up the hill, the car converts kinetic energy to potential energy. In the absence of friction, the car should end up at the same height as it started.
This law had to be combined with the law of conservation of mass when it was determined that mass can be inter-converted with energy.
One can also imagine the energy transformation in a pendulum. When the ball is at the top of its swing, all of the pendulum’s energy is potential energy. When the ball is at the bottom of its swing, all of the pendulum’s energy is kinetic energy. The total energy of the ball stays the same but is continuously exchanged between kinetic and potential forms
When the image distance is positive, the image is on the same side of the mirror as the object, and it is real and inverted. When the image distance is negative, the image is behind the mirror, so the image is virtual and upright. A negative m means that the image is inverted. Positive means an upright image.
Answer:
that's my answer to your question