I do believe all of these but core elements can be determined by spectroscopy which includes the use of electromagnetic radiation. Both the surface and core temperature can be measured using light. Surface elements can be found because the absorption lines of different elements in the spectra of the star, but I haven't heard anything about using spectral analysis for core elements.
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry
Answer:
The positive displacement from the midpoint of its motion at the speed equal one half of its maximum speed is 3.56 cm.
Explanation:
Maximum speed is :
v (max) = Aω
Speed v at any displacement y is given by
= ( - ) ........................................................ i
And,
v = v (max)
or, 2 × v = Aω .................................................... ii
Eliminating ω from equations i and ii,
= ( - )
or, = () =()
or, y = 3.56 cm.
Answer:
The answer is ""
Explanation:
For point a:
Energy balance equation:
From the above equation:
because the rate of air entering the tank that is constant.
Since the tank was initially empty and the inlet is constant hence,
Interpolate the enthalpy between . The surrounding air
temperature:
Substituting the value from ideal gas:
Follow the ideal gas table.
The and between temperature
Interpolate
Substitute values from the table.
For point b:
Consider the ideal gas equation. therefore, p is pressure, V is the volume, m is mass of gas. (M is the molar mass of the gas that is and R is gas constant), and T is the temperature.
For point c:
Entropy is given by the following formula:
True! The mechanical advantage of the wheel and axle is equal to the ratio of the radius of the wheel over the radius of the axle.