1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
15

The luminous flux of a torch of intensity 50 cd is?

Physics
1 answer:
RSB [31]3 years ago
5 0

Answer:

i dont know i am right but here Luminous intensity is defined as dI=dΨλ / dΩ, where dΨλ is the luminous flux (light energy flux in watts per m2) emitted within a solid angle dΩ. The light energy flux may be expressed in terms of the incident x-ray energy flux and the x-ray absorption and conversion properties of the scintillator(7,8,9).

Explanation:

You might be interested in
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
3 years ago
Read 2 more answers
What is the force on an object that goes from 35 m/s to 85 m/s in 20 seconds and has a mass of 148 kg
Sever21 [200]
F=ma
F = 148×(85-35)÷20
F = 148×(50÷20)
F = 148×2.5
F = 370N
3 0
3 years ago
What energy changes take place in a glowing electric bulb​
ehidna [41]

Answer:

electrical energy change into heat and light energy.

8 0
3 years ago
If an object moves twice as fast how do you think its energy changes? halves
il63 [147K]

Answer:

If an object moves twice as fast its kinetic energy quadruples.

Explanation:

The kinetic energy (K₁) of a body of mass (m) that moves with speed (v) is:

K₁= 1/2 * m* v²

If we double the speed of the body, its kinetic energy (K₂) will be:

K₂= 1/2 * m*( 2v)²

K₂= 1/2 * m* 4 *v²

K₂= 4(1/2 * m *v²)

K₂= 4*K₁

6 0
3 years ago
Classify each of the following chemical reactions. Upper S plus upper O Subscript 2 right arrow upper S upper O subscript 2. Upp
vodka [1.7K]

Check attached image.

4 0
3 years ago
Other questions:
  • Briefly describe how the Sun produces energy. plz and thank you :)
    9·2 answers
  • Which of the following is not found in dry air?
    10·1 answer
  • determine the weight in newtons of a woman whose weight in pounds is 125. also, find her mass in slugs and in kilograms. DEtermi
    8·1 answer
  • Explain the process that causes dew to form on blades of grass. ​
    8·2 answers
  • Two linear polarizing filters are placed one behind the other, so that their transmission directions are parallel to one another
    11·1 answer
  • The fast server in women's tennis is Venus Williams, who recorded a serve of 130   (209  ) in 2007.
    15·1 answer
  • If the intensity of an electromagnetic wave is 80 MW/m2, what is the amplitude of the magnetic field of this wave
    14·1 answer
  • Positional and non positional different between​
    8·1 answer
  • What is the constraint forces
    7·1 answer
  • Can anyone explain<br>if knows​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!