Answer:
<span>23.6
g carbon dioxide comes from 8.6 g of CH4 or 10.7 g carbon dioxide comes from
15.6 g O that means the 15.6 g of oxygen is still the limiting reactant because
it gets used up and only makes 10.7 g of CO2. </span>
Explanation:
1) Balanced chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O
2) mole ratios:
1 mol CH₄ : 2mol O₂ : 1 mol CO₂ : 2 mol H₂O
3) molar masses
CH₄: 16.04 g/mol
O₂: 32.0 g/mol
CO₂: 44.01 g/mol
4) Convert the reactant masses to number of moles, using the formula
number of moles = mass in grams / molar mass
CH₄: 8.6g / 16.04 g/mol = 0.5362 moles
<span />
O₂: 15.6 g / 32.0 g/mol = 0.4875 moles
5) If the whole 0.5632 moles of CH₄ reacted that yields to the same number of moles of CO₂ and that is a mass of:
mass of CO₂ = number of moles x molar mass = 23.60 g of CO₂
Which is what the first part of the answer says.
6) If the whole 0.4875 moles of O₂ reacted that would yield 0.4875 / 2 = 0.24375 moles of CO₂, and that is a mass of:
mass of CO₂ = 0.4875 grams x 44.01 g/mol = 10.7 grams of CO₂.
Which is what the second part of the answer says.
7) From the mole ratio you know infere that 0.5362 moles of CH₄ needs more twice number of moles of O₂, that is 1.0724 moles of O₂, and since there are only 0.4875 moles of O₂, this is the limiting reactant.
Which is what the chosen answer says.
8) From the mole ratios 0.4875 moles of O₂ produce 0.4875 / 2 moles of CO₂, and that is:
0.4875 / 2 mols x 44.01 g/mol = 10.7 g of CO₂, which is the last part of the answer.
False.....................................
Answer:
The weight percent of NaCl in the container is 21.5%
Explanation:
Given that,
Mass of NaCl = 168.90 gram
Mass of water = 616.00 grams
We need to calculate the weight percent of NaCl in the container
Using formula of percentage of weight

Put the value into the formula


Hence, The weight percent of NaCl in the container is 21.5%
The main purpose of scientific methods, is to show the variations of the topic you are doing in science and how you are proving it to be that way.
Tin to Fluorine mass ratios:
1) For compound A:
38.5/12.3
= 3.13
2) For compound B:
56.5/36.2
= 1.56
The lowest whole number mass ratio is 2. It cannot be 1 because it is less than that required for compound B.