by the use of elimination method
make all coefficients of subject to be eliminated similar..by multiplying the coefficients with one another
for eqn(i)
5(-10y+9x=-9)
-50y+45x=-45
for eqn(ii)
9(10y+5x=-5)
90y+45x=-45
-50y+45x=-45
90y+45x=-45
...subtract each set from the other...
we get
-140y+0=0
y=0
from eqn(i)
10y+5x=-5
0+5x=-5
x= -1
Answer:
d
Step-by-step explanation:
Let 1st integer = xLet 2nd integer = x + 1 We set up an equation. x(x + 1) = 195 x2 + x = 195 x2 + x - 195 = 0
We will use the quadratic formula: x = (-b ± √(b2 - 4ac) / (2a) x = (-1 ± √(1 - 4(-195))) / 2 x = (-1 ± √(781)) / 2 x = (-1 ± 27.95) / 2 x = 13.48x = -14.78
<span>We determine which value of x when substituted gives us a product of 195.</span> 13.48(14.48) = 195.19-14.48(-13.48) = 195.19 <span>The solution is 2 sets of two consecutive number</span> <span>Set 1</span> The 1st consecutive integer is 13.48The 2nd consecutive integer is 14.48
<span>Set 2</span> The 1st consecutive integer is -14.48The 2nd consecutive integer is -13.48Hopefully this helped, hard work lol :)
Answer:
Step-by-step explanation:
We can easily find the determinant of a matrix of which will be the cofactor of 2. Multiplying the diagonal elements of the matrix, we get. Now subtract the value of the second diagonal from the first, i.e, 48 – 3 = 45. Check the sign that is assigned to the number