When someone lifts a book from the ground, the work you use is positive. By lifting the book, you change it's energy and it's original place The book gains, kinectic energy.
Hope I helped.
Answer:
T = 693.147 minutes
Explanation:
The tank is being continuously stirred. So let the salt concentration of the tank at some time t be x in units of kg/L.
Therefore, the total salt in the tank at time t = 1000x kg
Brine water flows into the tank at a rate of 6 L/min which has a concentration of 0.1 kg/L
Hence, the amount of salt that is added to the tank per minute = 
Also, there is a continuous outflow from the tank at a rate of 6 L/min.
Hence, amount of salt subtracted from the tank per minute = 6x kg/min
Now, the rate of change of salt concentration in the tank = 
So, the rate of change of salt in the tank can be given by the following equation,

or, 
or, T = 693.147 min (time taken for the tank to reach a salt concentration
of 0.05 kg/L)
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1
Explanation:
It is given that,
Frequency of diagnostic ultrasound, f = 3.82 MHz = 3820 Hz
The speed of the sound in air, v = 343 m/s
(a) We need to find the wavelength in air of such a sound wave. Let it is given by λ₁
i.e. 


(b) If the speed of sound in tissue is 1650 m/s .



Hence, this is the required solution.
Answer:
240 Nm
Explanation:
The clockwise torque is the torque determined only by the force that makes the lever rotating clockwise: therefore, the force of 80 N on the right.
The torque produced by this force is given by:

where
F is the magnitude of the force
d is the arm
For the force of 80 N on the right,
F = 80 N
d = 3 m (distance from the pivot)
So, the clockwise moment is
