Answer:
2.5m/s2
Explanation:
The following were obtained from the question:
F = 600N
M = 240 kg
a =?
Recall: F = Ma
a = F/M
a = 600/240
a = 2.5m/s2
Therefore, the acceleration of the motorcycle is 2.5m/s2
Answer:
According to Newton's Second Law of Motion :
Where,
F = Force Applied
m = Mass of the object
a = Acceleration
Now, we will use this law to solve this question.
Given :
Acceleration or a = 15.3 m/s²
Force = 44 N
Mass = ?
Substitute, the given values in the formula.
F = ma
⇒ m = F/a
m = 44/15.3
<u>m = 2.9 kg</u>
Answer:
<em>-2 units of charge</em>
Explanation:
charge on A = Qa = -6 units
charge on B = Qb = 2 units
if the spheres are brought in contact with each other, the resultant charge will be evenly distributed on the spheres when they are finally separated.
charge on each sphere will be = 
charge on each sphere =
=
= <em>-2 units of charge</em>
Answer:
d. a large region outside Jupiter occupied by its magnetic field and filled with high-energy charged particles.
Explanation:
A magnetic field is generated by the movement of a charged particle in the space around it. For the case of Jupiter its magnetic field is created by the liquid metallic hydrogen in its core.
So the magnetosphere is just the magnetic field around a planet, which interacts with high-energy charged particles (for example: Cosmic Rays).
Magnetospheres protect planets from the extreme radiation coming from stars or another interstellar source.
Answer:
I = 1.4kgm²
Explanation:
The rotational motion is caused by the frictional force, which generates a torque on the system. As there is no other force that creates a torque, this can be expressed in the equation of rotational motion below:

And
, where r is the distance from the point of application and the rotation axis, and f is the magnitude of the frictional force. This is because the frictional force is applied in the direction that causes the greatest angular acceleration (this is, 90°) and
. Then, we have that:

Plugging in the given values, we obtain:

In words, the total moment of inertia is equal to 1.4kgm².