You have written the answer within your question.
mass of 1kg metal is "1 kilogram"
but when you talk about it's weight
then,
it's weight is 9.8 Newton.
Snell's law: n1Sinα=n2Sin β where α=Incidence angle, β=angle of refraction, n1 and n2 are the indices of refraction for water and air respectively.
Therefore,
Sinα=n2/n1 Sinβ For refracted ray to be along the surface of water, β=90° and thus Sinβ = 1
Sinα=n2/n1= 1/1.33 = 0.7519 => α=sin^-1 (0.7519) = 48.75°
When light moves from a medium of higher index of refraction (such as water) to medium of lesser index of refraction (such as air), the refracted ray is bend such that α is bigger than β. This is internal refraction. At some value of α, β approaches 90°. This incidence angle is called critical incidence angle. Therefore, the current scenario is shows critical angle of incidence.
Answer:
a) 
b) 
c) 
Explanation:
From the question we are told that:
Given Frequencies
a. 100 Hz,
b. 1 kHz,
c. 100 kHz.
Generally the equation for Waveform Period is mathematically given by

Therefore
a)
For



b)
For



c)
For



Answer:
351 ohm
720 ohm
Explanation:
When c and d are open:
Terminals c and d are open.. If you redraw the circuit as below, you can see that the two resistors in the first column are in parallel as, they are connected together at both pairs of terminals (due to the short).
Hence, we have a pair of parallel resistors:
Req1 = (R1*R2)/ (R1 + R2) = 360*540/(360+540) = 216 ohms
Req2 = (R3*R4)/ (R3 + R4) = 180*540/(180+540) = 135 ohms
Now these two sets are in series with another Hence,
Req = Req1 + Req2 = 216 + 135 = 351 ohms
Answer: 351 ohms
When c and d are shorted:
The current will flow through the least resistant path naturally from resistors R3 and R1 or R4.
Both of these resistor lie in a single path placing the resistors in series to one another, hence
Req = R3 + R1 = 180 + 540 = 720 ohms
Answer:720 ohms
Answer:
direct current
Explanation:
it has a direct path to go down to reach the specific point