Answer: CrO₄⁻ and Ba²⁺
Explanation:
1) Chemical equation given:
2H⁺ + CrO₄⁻ + Ba²⁺ + 2OH⁻ → Ba²⁺ + CrO₄⁻ + 2H₂O
2) Analysis
That is an oxidation-reduction equation (some species are been oxidized and others are being reduced).
The given equation is known as total ionic equation, because it shows all the species as ions that are part of the reaction.
2) Specator ions
Spectator ions are the ions that do not change their oxidation state and are easily identified as they are the same in the reactant and product sides.
Here the ions that are the same in the reactant and product sides are:
CrO₄⁻ and Ba²⁺
3) Addtitional explanation.
Once you identify the spectator ions you can delete them from the equation to obtain the net ionic equation , which in this case turns to be:
2H⁺ + 2OH⁻ → 2H₂O
But this is not part of the question; it is some context to help you understand the use of the spectator ions concept.
Answer:
ΔT = Tfinal − Tinitial = 150°C − 35.0°C = 125°C
given the specific heat of iron as 0.108 cal/g·°C
heat=(100.0 g)(0.108 cal /g· °C )(125°C) =
100x 0.108x125= 1350 cal
Petroleum products<span> are materials derived from crude oil</span><span> as it is processed.
Hope this helps! </span>
Explanation:
Filtration is a separation technique in which solid particles suspended in liquid medium are separated by allowing the mixture through the pores of the filter paper. By this solid particles get collect on filter paper and liquid drains out from the pores of the filter paper.
The chronological order for given steps will be:
- Weigh and fold the filter paper.
- Place the filter paper in the funnel, then place the funnel in the Erlenmeyer flask.
- Allow the solid/liquid mixture to drain through the filter.
- Use water to rinse the filter paper containing the mixture.
- Weigh the dried filter paper and copper.