If a chemical reaction catalyzed by an enzyme is being carried out, and there is a sudden, drastic decrease in temperature, the thing that will most likely to happen next is going to be the :
“enzyme activity will decrease, and the reaction will proceed very slowly, or possibly not at all.“
Explanation:
This compliance is required to how enzymes bind to other molecules and cause chemical reactions to occur on those molecules. Lowering the temperature reduces the motion of molecules and atoms, expecting this compliance is reduced or lost. As the temperature decreases, so do enzyme activity. While higher temperatures do increase the activity of enzymes and the rate of reactions,
Answer:
1.9 × 10² g NaN₃
1.5 g/L
Explanation:
Step 1: Write the balanced decomposition equation
2 NaN₃(s) ⇒ 2 Na(s) + 3 N₂(g)
Step 2: Calculate the moles of N₂ formed
N₂ occupies a 80.0 L bag at 1.3 atm and 27 °C (300 K). We will calculate the moles of N₂ using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.3 atm × 80.0 L / (0.0821 atm.L/mol.K) × 300 K = 4.2 mol
We can also calculate the mass of nitrogen using the molar mass (M) 28.01 g/mol.
4.2 mol × 28.01 g/mol = 1.2 × 10² g
Step 3: Calculate the mass of NaN₃ needed to form 1.2 × 10² g of N₂
The mass ratio of NaN₃ to N₂ is 130.02:84.03.
1.2 × 10² g N₂ × 130.02 g NaN₃/84.03 g N₂ = 1.9 × 10² g NaN₃
Step 4: Calculate the density of N₂
We will use the following expression.
ρ = P × M / R × T
ρ = 1.3 atm × 28.01 g/mol / (0.0821 atm.L/mol.K) × 300 K = 1.5 g/L
In ionic bonding, an arrow is often drawn on the diagram to show the direction the electrons move to form the ions.
Qualitative properties are properties that are observed and can generally not be measured with a numerical result. They are contrasted to quantitative properties which have numerical characteristics.