Yes, because beryllium is less dense and harder than oxygen.
Answer:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Explanation:
H₂²⁺(aq) + O₂²⁻(aq) + Mg²⁺(aq) + SO₃²⁻(aq) → Mg²⁺(aq) + SO²⁻₄(aq) + H₂O(l)
A careful observation of the equation above, shows that the equation is already balanced.
To obtain the net ionic equation, we simply cancel Mg²⁺ from both side of the equation as shown below:
H₂²⁺(aq) + O₂²⁻(aq) + SO₃²⁻(aq) → SO²⁻₄(aq) + H₂O(l)
Answer:
103.9 g
Explanation:
First <u>we convert 54.0 g of propane (C₃H₈) into moles</u>, using its <em>molar mass</em>:
- 54.0 g ÷ 44 g/mol = 1.23 mol C₃H₈
Then we <u>convert 1.23 moles of C₃H₈ into moles of CO₂</u>, using the <em>stoichiometric coefficients</em>:
- 1.23 mol C₃H₈ *
= 3.69 mol CO₂
We <u>convert 3.69 moles of CO₂ into grams</u>, using its <em>molar mass</em>:
- 3.69 mol CO₂ * 44 g/mol = 162.36 g
And <u>apply the given yield</u>:
- 162.36 g * 64.0/100 = 103.9 g
<span>The fog in the mirror is the condensation of water vapor as it touches a colder surface. When you are running cold water you just cool down everything around it. Now the vapor coming from the hot shower will mostly condense right there and will not reach the mirror.</span>