Answer:
The correct option is: <u>B. 366 torr</u>
Explanation:
Given: <u>On the ground</u>- Initial Volume: V₁ = 8.00 m³, Initial Atmospheric Pressure: P₁= 768 torr;
<u>At 4200 m height</u>- Final Volume: V₂ = 16.80 m³, Final Atmospheric Pressure: P₂ = ?
Amount of gas: n, and Temperature: T = constant
<u>According to the Boyle's Law</u>, for a given amount of gas at constant temperature: P₁ V₁ = P₂ V₂
⇒ P₂ = P₁ V₁ ÷ V₂
⇒ P₂ = [(768 torr) × (8.00 m³)] ÷ (16.80 m³)
⇒ P₂ = 365.71 torr ≈ 366 torr
<u>Therefore, the final air pressure at 4200 m height: P₂ = 366 torr.</u>
Answer:
Well I know that when the liquid changes from clear to dark blue and small bubbles form and rise to the surface that is a reaction
Explanation:
Answer:
k = [F2]² [PO]² / [P2] [F2O]²
Explanation:
In a chemical equilibrium, the equilibrium constant expression is written as the ratio between the molar concentration of the products over the molar concentration of the reactants. Each species powered to its reaction coefficient. For the equilibrium:
P2(g) + 2F2O(g) ⇄ 2PO(g) + 2F2(g)
The equilibrium constant, k, is:
k = [F2]² [PO]² / [P2] [F2O]²
I believe this a PV = nRT question whereas
you re write the formula and solve for volume
V = nRT/ P
then you input the values
P= pressure constant
V= x
n = moles = 0.2540
R = gas constant should be 8.314J mol
T = C degrees + 273.15 = K
solve for voume
make sure all units match
and use sig figs!!!!
Answer:
Aluminum is the 13th element on the periodic table. It is located in period 3 and family 13.
Explanation: