Answer:
Electrons are transferred between atoms together in the ionic compound. The ions are arranged in a regular repeating pattern in an ionic crystal
Explanation:
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
![K_c=\frac{[Isobutane]}{[Butane]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BIsobutane%5D%7D%7B%5BButane%5D%7D)

x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M
Answer:
Equal number of atoms of each gas in each container
Explanation:
When the valves opened, the two contaienrs become one and the gases beging to mix by diffusion. This phenomenom is produced by the differeces of concentration of a gas between two points of the container.
The gases will continue diffunding util their concentration in both containers are equal.
SAMPLE A - <span>pure substance.
</span>SAMPLE B - <span>homogeneous mixture.
</span>SAMPLE C - <span>heterogeneous mixture.
</span>Pure substance - <span>constant composition and properties.</span>
Homogeneous mixture - same uniform appearance and composition.
Heterogeneous mixture - <span>not </span>uniform<span> in composition, two phases (liquid and dust).
</span>