Dalton gathers evidence for the existence of atoms by measuring the masses of elements after compounds are formed.
<u>Explanation</u>:
- John Dalton accumulated proof for the presence of atoms by estimating the majority of components that responded to frame mixes. All components are made out of molecules. All particles of a similar component have a similar mass, and atoms of various components have various masses. Mixes contain atoms of more than one component.
-
Dalton did numerous investigations that gave proof to the presence of particles. For instance, He researched pressure and different properties of gases, from which he induced that gases must comprise of little, singular particles that are in steady, arbitrary movement.
The negative ion reactions that consist of the formation of carbon dioxide in the atmosphere is generally an exothermic reaction. By definition, an exothermic reaction takes place when the chemical process eventually releases heat as its by-product. It is in contrast in endothermic process wherein heat is absorbed.
Explanation:
A low-pressure area, or "low", is a region where the atmospheric pressure at sea level is below that of surrounding locations. Low-pressure systems form under areas of wind divergence that occur in upper levels of the troposphere.
To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
Relative formula mass C₅H₁₁ = 71
Now divide the molar mass by the RFM = 142.32 / 71 = 2
Now C₍₅ₓ₂₎H₍₁₁ₓ₂) = C₁₀H₂₂
Hope that helps