Answer:
Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines.
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
k = 5.29
a = 0.78m/s²
KE = 0.0765J
<u>Explanation:</u>
Given-
Mass of air tracker, m = 1.15kg
Force, F = 0.9N
distance, x = 0.17m
(a) Effective spring constant, k = ?
Force = kx
0.9 = k X0.17
k = 5.29
(b) Maximum acceleration, m = ?
We know,
Force = ma
0.9N = 1.15 X a
a = 0.78 m/s²
c) kinetic energy, KE of the glider at x = 0.00 m.
The work done as the glider was moved = Average force * distance
This work is converted into kinetic energy when the block is released. The maximum kinetic energy occurs when the glider has moved 0.17m back to position x = 0
As the glider is moved 0.17m, the average force = ½ * (0 + 0.9)
Work = Kinetic energy
KE = 0.450 * 0.17
KE = 0.0765J
Refer to the diagram shown below.
At A, the boy begins walking up the stairs.
At B, the boy is at the top of the slide. He has acquired PE (potential energy).
The value of the PE is
(50 kg)*(9.8 m/s²)*(11.5 m) = 5635 J
At C, the boy has KE (kinetic energy).
The value of the KE is
(1/2)*(50 kg)*(12 m/s)² = 3600 J
Energy is lost between B and C due to friction.
The lost energy is
5635 - 3600 = 2035 J
The distance traveled along the slide is 108 m.
If F = the average frictional force, then
(F N)*(108 m) = 2035 J
F = 18.84 N
Answers:
(a) The mechanical energy lost by sliding is 2035 J.
(b) The average frictional force is 18.84 N