Answer:
Step-by-step explanation:
Given the definite integral
, we to evaluate it. Using integration by substitution method.
Let u = 1-2x⁵ ...1
du/dx = -10x⁴
dx = du/-10x⁴.... 2
Substitute equation 1 and 2 into the integral function and evaluate the resulting integral as shown;

![= \dfrac{-1}{10} \int\limits {\dfrac{du}{u^5} } \\\\= \dfrac{-1}{10} \int\limits {{u^{-5}du } \\= \dfrac{-1}{10} [{\frac{u^{-5+1}}{-5+1}] \\\\= \dfrac{-1}{10} ({\frac{u^{-4}}{-4})\\\\](https://tex.z-dn.net/?f=%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5Cint%5Climits%20%7B%5Cdfrac%7Bdu%7D%7Bu%5E5%7D%20%7D%20%20%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5Cint%5Climits%20%7B%7Bu%5E%7B-5%7Ddu%20%7D%20%20%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%5B%7B%5Cfrac%7Bu%5E%7B-5%2B1%7D%7D%7B-5%2B1%7D%5D%20%20%5C%5C%5C%5C%3D%20%5Cdfrac%7B-1%7D%7B10%7D%20%28%7B%5Cfrac%7Bu%5E%7B-4%7D%7D%7B-4%7D%29%5C%5C%5C%5C)

substitute u = 1-2x⁵ into the result

Hence

Answer:
The measurement of angel c is B.
Answer: The approximate value of x is -3.396
Step-by-step explanation:
Given:
Now,to find the value of x.
Use logarithm rule:
We have,
Now,
Using value of: and we get,
on simplify:
Adding 1 both the sides, we get
Therefore, the approximate value of x for the equation is -3.396.
=
Step-by-step explanation:
1. 156
2. 15.6
3. 1.56
You just move the decimal point in depending on the number or zeros.