Answer:
Translate the circles so they share a common center point, and dilate circle Y by a scale factor of 3.
Step-by-step explanation:
Step-by-step explanation:
The solution to this problem is very much similar to your previous ones, already answered by Sqdancefan.
Given:
mean, mu = 3550 lbs (hope I read the first five correctly, and it's not a six)
standard deviation, sigma = 870 lbs
weights are normally distributed, and assume large samples.
Probability to be estimated between W1=2800 and W2=4500 lbs.
Solution:
We calculate Z-scores for each of the limits in order to estimate probabilities from tables.
For W1 (lower limit),
Z1=(W1-mu)/sigma = (2800 - 3550)/870 = -.862069
From tables, P(Z<Z1) = 0.194325
For W2 (upper limit):
Z2=(W2-mu)/sigma = (4500-3550)/879 = 1.091954
From tables, P(Z<Z2) = 0.862573
Therefore probability that weight is between W1 and W2 is
P( W1 < W < W2 )
= P(Z1 < Z < Z2)
= P(Z<Z2) - P(Z<Z1)
= 0.862573 - 0.194325
= 0.668248
= 0.67 (to the hundredth)
2/3 is equivalent to 4/6. Other fractions are 6/9, or 8/12.
Answer:
Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form.The primary reason for converting numbers into scientific notation is to make calculations with unusually large or small numbers less cumbersome.
Step-by-step explanation: