The product of two rational numbers is always rational because (ac/bd) is the ratio of two integers, making it a rational number.
We need to prove that the product of two rational numbers is always rational. A rational number is a number that can be stated as the quotient or fraction of two integers : a numerator and a non-zero denominator.
Let us consider two rational numbers, a/b and c/d. The variables "a", "b", "c", and "d" all represent integers. The denominators "b" and "d" are non-zero. Let the product of these two rational numbers be represented by "P".
P = (a/b)×(c/d)
P = (a×c)/(b×d)
The numerator is again an integer. The denominator is also a non-zero integer. Hence, the product is a rational number.
learn more about of rational numbers here
brainly.com/question/29407966
#SPJ4
The max occurs when length=width
so
perimiter=16
and L=W
P=2(L+W)
16=2(L+L)
16=2(2L)
16=4L
4=L
the dimentions are length and width are 4 meters
aera will be 16 square meters
Answer:
320/4=8 8 tens /4 tens =2
Step-by-step explanation:
Answer:
Step-by-step explanation:
given is a system of linear equations in 3 variables as

This can be represented in matrix form as
AX=B Or
![\left[\begin{array}{ccc}-1&-4&2\\1&2&-1\\1&1&-1\end{array}\right] *\left[\begin{array}{ccc}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}-10\\11\\14\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-4%262%5C%5C1%262%26-1%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D%20%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-10%5C%5C11%5C%5C14%5Cend%7Barray%7D%5Cright%5D)
So solution set
X would be 
|A|=-1(-1)+4(0)+2(-1)=--1
Cofactors of A are
-1 0 -1
-2 -1 -3
0 1 2
So inverse of A is
1 2 0
0 1 -1
1 3 -2
Solution set would be
x=12
y=-3
z=-5
Answer:
2/6 each
Step-by-step explanation:
6 pancakes divided by the 3 kids equals 2, so each child will get 2 pancakes.