It depends on the process.
Like for example if the process is isothermal(temperature is constant), you can use,
PV = constant or P1V1 = P2V2 where P1V1 are initial conditions and P2V2 are final.
For adiabatic process,
PV^gamma = constant or P1V1 ^gamma = P2V2 ^gamma.
where gamma = Cp
------
Cv
Cp = specific heat at constant pressure and Cv = specific at constant volume.
Value of Gamma will be given in question.
Hope this helps!
Answer: The value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
Explanation:
Given: Moles of solute = 0.793 mol
Mass of solvent = 0.758

As molality is the number of moles of solute present in kg of solvent. Hence, molality of given solution is calculated as follows.

Now, the values of
is calculated as follows.

where,
i = Van't Hoff factor = 1 (for chloroform)
m = molality
= molal boiling point elevation constant
Substitute the values into above formula as follows.

Thus, we can conclude that the value of
for chloroform is
when 0.793 moles of solute in 0.758 kg changes the boiling point by 3.80 °C.
The volume (in mL) of calcium hydroxide, Ca(OH)₂ needed for the reaction is 19.8 mL
<h3>Balanced equation </h3>
2HCl + Ca(OH)₂ —> CaCl₂ + 2H₂O
From the balanced equation above,
- The mole ratio of the acid, HCl (nA) = 2
- The mole ratio of the base, Ca(OH)₂ (nB) = 1
<h3>How to determine the volume of Ca(OH)₂ </h3>
- Molarity of base, Ca(OH)₂ (Mb) = 1.48 M
- Volume of acid, HCl (Va) = 36 mL
- Molarity of acid, HCl (Ma) = 1.63 M
- Volume of base, Ca(OH)₂ (Vb) =?
MaVa / MbVb = nA / nB
(1.63 × 36) / (1.48 × Vb) = 2
58.68 / (1.48 × Vb) = 2
Cross multiply
2 × 1.48 × Vb = 58.68
2.96 × Vb = 58.68
Divide both side by 2.96
Vb = 58.68 / 2.96
Vb = 19.8 mL
Learn more about titration:
brainly.com/question/14356286
#SPJ1
Answer:
· A chemical reaction is a process generally characterized by a chemical change in which the starting materials (reactants) are different from the products. Chemical reactions tend to involve the motion of electrons, leading to the formation and breaking of chemical bonds. There are several different types of chemical reactions and more than one way of classifying them.
Explanation: