A solution may exist in any phase so your answer is D. any of the above
hope this helps :)
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
0.257 L
Explanation:
The values missing in the question has been assumed with common sense so that the concept could be applied
Initial volume of the AICI3 solution
Initial Molarity of the solution
Final molarity of the solution
Final volume of the solution
From Law of Dilution,
Final Volume of the solution 
Answer:
D.) They often form hydroxide ions.
Explanation:
They generate hydroxide ions in water. they are soapy to touch and bitter in taste. they conduct electricity.
(all bases have hydroxide ions)