Answer:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Explanation:
According to Brönsted-Lowry acid-base theory:
- An acid is a substance that donates H⁺.
- A base is a substance that accepts H⁺.
When methylamine reacts with water, it behaves as a Brönsted-Lowry base, according to the following reaction.
CH₃NH₂(aq) + H₂O(l) ⇄ CH₃NH₃⁺(aq) + OH⁻(aq)
The basic equilibrium constant (Kb) is:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
5.22*22^3 should be the answer
<h3>Answer:</h3>
There is One electrophilic center in acetyl chloride.
<h3>Explanation:</h3>
Electrophile is defined as any specie which is electron deficient and is in need of electrons to complete its electron density or octet. The main two types of electrophiles are those species which either contain positive charge (i.e. NO₂⁺, Cl⁺, Br⁺ e.t.c) or partial positive charge like that contained by the sp² hybridized carbon of acetyl chloride shown below in attached picture.
In acetyl chloride the partial positive charge on sp² hybridized carbon is generated due to its direct bonding to highly electronegative elements *with partial negative charge) like oxygen and chlorine, which tend to pull the electron density from carbon atom making it electron deficient and a good electrophile for incoming nucleophile as a center of attack.