In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is

where D=5.00 m is the distance of the screen from the slits, and

is the distance between the two slits.
The fringes on the screen are 6.5 cm=0.065 m apart from each other, this means that the first maximum (m=1) is located at y=0.065 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:

And from the relationship between frequency and wavelength,

, we can find the frequency of the light:
Answer:
The mass of the massive object at the center of the Milky Way galaxy is 
Explanation:
Given that,
Diameter = 10 light year
Orbital speed = 180 km/s
Suppose determine the mass of the massive object at the center of the Milky Way galaxy.
Take the distance of one light year to be 9.461×10¹⁵ m. I was able to get this it is 4.26×10³⁷ kg.
We need to calculate the radius of the orbit
Using formula of radius



We need to calculate the mass of the massive object at the center of the Milky Way galaxy
Using formula of mass

Put the value into the formula


Hence, The mass of the massive object at the center of the Milky Way galaxy is 
4
Every current through a wire produced a magnetic field. And since the magnetic field of Earth is weak, it will get attracted towards the wire.
It is an example of balanced force.
hope this helps. good luck
They can either cancel each other or add up to a resultant force with a certain direction and modulus.
Newton's second law states that F=m*a, where F is the resultant force, ie ΣF.