Answer:
therefore critical angle c= 69.79°
Explanation:
Canola oil is less dense than water, so it floats over water.
Given 
which is higher than that of water
refractive index of water 
to calculate critical angle of light going from the oil into water
we know that

now putting values we get

c= 
c=69.79°
therefore critical angle c= 69.79°
Answer:
The period of rotation is
T=8.025s
Explanation:
The person is undergoing simple harmonic motion on the wheel
Given data
mass of the person =75kg
Radius of wheel r=16m
Velocity =8.25m/s
The oscillating period of simple harmonic motion is given as
T=(2*pi)/2=2*pi √r/g
Assuming that g=9.81m/s
Substituting our data into the expression we have
T=2*3.142 √ 16/9.81
T=6.284*1.277
T=8.025s
Answer:
The total Mechanical energy will be zero
Explanation: Escape velocity is the velocity required by a free object in order to overcome the impact of the force of gravity. The total mechanical energy of an object is the total energy possessed by an object which includes its kinectic and potential energy.
since the object is moving at an escape velocity which is 11.2m/s the object will be assumed to be weightless
Etotal = kinetic energy + potential energy
kinetic energy= 1/2*M*V*V
Potential energy=MGH
Etotal=1/2*0*11.2*11.2+0*0*0
Etotal=0+0
Etotal=0.
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
(50 gal / 5 min) x (.0037854 m³/gal) x (1 min / 60 sec)
= (50 · 0.0037854 · 1) / (5 · 60) m³/sec
= 0.000631 m³/sec