Answer:
The specific heat capacity of a metal is 1.31 J/g°C = C
Explanation:
A classical excersise of calorimetry to apply this formula:
Q = m . C . ΔT
177.5 J = 15 g . C (34°C - 25°C)
177.5 J = 15g . 9°C . C
177.5 J /15g . 9°C = C
1.31 J/g°C = C
Answer:
2
Explanation:
Since you are balancing the equation you need to have equal amounts of each element on each side. Right now there is 2n and 2o on one side, and on the other 2n and 1o. Although the number of n's on each side is equal the number of o's are not. First I balance the number of oxygen's on each below, but doing that made the number of nitrogen's unbalanced. So then I balanced the nitrogens in step 2.
__N2+ __O2 = __N2O
1. __N2+ __O2 = 2 N20
2. 2 N2 + 1 O2 = 2 N2O
Answer:
2.33×10¯¹⁶ g of forsterite
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This equally means that 1 mole of forsterite (Mg2SiO4) contains 6.02×10²³ atoms.
1 mole of forsterite (Mg2SiO4) = (24×2) + 28 + (16×4)
= 48 + 28 + 64
= 140 g
Finally, we shall determine the mass of forsterite that contains a million oxygen atoms.
140 g of forsterite (Mg2SiO4) contains 6.02×10²³ atoms.
Therefore, Xg of forsterite (Mg2SiO4) will contain 1×10⁶ atoms of oxygen i.e
Xg of forsterite (Mg2SiO4) =
(140 × 1×10⁶) /6.02×10²³
= 2.33×10¯¹⁶ g
Therefore, 2.33×10¯¹⁶ g of forsterite contains a million oxygen atoms..
Answer:
- a) 2N₂O(g) → 2N₂(g) + O₂(g)
Explanation:
Arrange the equations in the proper way for better understanding.
T<em>he reaction between nitrogen and oxygen is given below:</em>
<em />
- <em>2N₂(g) + O₂(g) → 2N₂O(g)</em>
<em />
<em>We therefore know that which of the following reactions can also occur?</em>
<em />
- <em>a) 2N₂O(g) → 2N₂(g) + O₂(g)</em>
- <em>b) N₂(g) + 2O₂(g) → 2NO₂(g)</em>
- <em>c) 2NO₂(g) → N₂(g) + 2O₂(g)</em>
- <em>d) None of the Above</em>
<h2>Solution</h2>
Notice that the first equation, a) 2N₂O(g) → 2N₂(g) + O₂(g), is the reverse of the original equation, 2N₂(g) + O₂(g) → 2N₂O(g).
The reactions in gaseous phase are reversible reactions that can be driven to one or other direction by modifying the conditions of temperature or pressure.
Thus, the equilibrium equation would be:
Which shows that both the forward and the reverse reactions occur.
Whether one or the other are favored would depend on the temperature and pressure: high temperatures would favor the reaction that consumes more heat (the endothermic reaction) and high pressures would favor the reaction that consumes more moles.
Thus, by knowing that one of the reactions can occur you can conclude that the reverse reaction can also occur.

Ethene react with oxygen at a
molar ratio:

Convert the quantity of each reactant supplied to number of moles of particles:
The question stated not whether both reactants were used up in this process. Thus start by testing the assumption that e.g., ethene was used up while some oxygen gas were left unreacted (ethene as the <em>limiting </em>reagent.) Under this assumption, the relative availability of the two species,
and
(as seen in the balanced chemical equation) shall satisfy the relationship

In other words,


Evaluating the expression
with data given in the question yields approximately
, which does satisfy the relationship. Hence the assumption holds and ethene is the limiting reactant.
The quantity of a reactant produced in a chemical reaction is related to its stoichiometric (of relating to proportions) relationship with the limiting reactant (or any of the reactants in case of more than one limiting reactant.) For this scenario, given the molar ratio
,

