B. Mn + NiBr₂ → Ni + MnBr₂
Explanation:
The reaction that can be predicted of all is Mn + NiBr₂ → Ni + MnBr₂.
The activity series is used to predict the products of single displacement reactions.
The series ranks metals in order of their reactivity. Those higher up in the series are highly reactive metals. Those at the bottom are slightly to non-reactive metals.
For a single displacement reaction to occur, a metal higher up in the activity series displaces one that is lower in the series.
Reaction A will not occur, Ba is higher in the series
Reaction C will not occur, Pt and Au are unreactive
Reaction D will not occur as Zn is lower in the series
Mn is higher in the reactivity series and it will displace Ni from the solution.
Learn more:
Synthesis reaction brainly.com/question/4216541
#learnwithBrainly
I think the amount would be a 0.4998 mol
I did moles=mass(g)/A,r
=12.5/24.3 to get that
<span>You may already know that when you breathe in, your body takes in oxygen from the air. When you breathe out, your lungs expel carbon dioxide back into the air. But the breath you breathe out contains more than just carbon dioxide.</span>
When you exhale (breathe out), your breath also containsmoisture. Because your mouth and lungs are moist, each breath you exhale contains a little bit of water in the form of water vapor(the gas form of water).
For water to stay a gas in the form of water vapor, it needs enough energy to keep its molecules moving. Inside your lungs where it's nice and warm, this isn't a problem.
The pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
<h3>What is pressure?</h3>
Pressure is the force exerted by any object on another object.
Given that, a and b separate 1 liter containers and exert pressure of 2 atm and 3 atm respectively.
When both gases a and b exert together, the pressure then
2 atm + 3 atm = 5 atm.
Thus, the pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
Learn more about pressure
brainly.com/question/12977546
#SPJ4