゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚Answer:゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚
The following: Jupiter, Saturn, Uranus, or Neptune.
゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚Explanation:゚+*:ꔫ:*﹤ ﹥*:ꔫ:*+゚
any of the planets Jupiter, Saturn, Uranus, and Neptune whose orbits lie beyond the asteroid belt.
Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.
Answer: It's colder.
Explanation: Well for starters Valparaiso is further away from the equator, and Australia is already really hot. But say that Valparaiso is further from the equator should be good enough.
It’s a polyatomic and it has a negative charge. It’s located in the nucleus of the atom, along with the protons.
Answer:
186.9Kelvin
Explanation:
The ideal gas law equation is PV
=
n
R
T
where
P is the pressure of the gas
V is the volume it occupies
n is the number of moles of gas present in the sample
R is the universal gas constant, equal to 0.0821
atm L
/mol K
T is the absolute temperature of the gas
Ensure units of the volume, pressure, and temperature of the gas correspond to R
( the universal gas constant, equal to 0.0821
atm L
/mol K
)
n
=
3.54moles
P= 1.57
V= 34.6
T=?
PV
=
n
R
T
PV/nR = T
1.57 x 34.6/3.54 x 0.0821
54.322/0.290634= 186.908620464= T
186.9Kelvin ( approximately to 1 decimal place)