A 72 kg athlete climbs a rope to a height of 12m. Calculate the increase in gravitational potential energy it has experienced.
Answer:
8467.2J
Explanation:
Given parameters:
Mass of the athlete = 72kg
Height of the climb = 12m
Unknown:
Increase in gravitational potential energy it has experienced = ?
Solution:
Gravitational potential energy is the energy due to the position of a body. It is mathematically expressed as;
Gravitational potential energy = m x g x h
m is the mass
g is the acceleration due to gravity = 9.8m/s²
h is the height
Insert the parameters and solve;
Gravitational potential energy = 72 x 9.8 x 12
GPE = 8467.2J
The statement the chemical makeup of the universe has changed dramatically provides evidence that supports the Big Bang Theory (Option D).
<h3>What is the Big Bang Theory?</h3>
The Big Bang Theory is a widely accepted theory in physics that states all the universe began with a huge explosion and form then matters expanded in space at the same time that it is cooling.
Therefore, with this data, we can see that the Big Bang Theory states that the chemical composition of the universe associated with hydrogen and helium modified since this explosion.
Learn more about the Big Bang Theory here:
brainly.com/question/1973038
#SPJ1
Answer:
23 kPa = Partial pressure O₂
Explanation:
In a mixture of gases, the sum of partial pressure of each gas that contains the mixture = Total pressure
Total pressure = Partial pressure N₂ + Partial pressure CO₂ + Partial pressure O₂
95 kPa = 48 kPa + 24 kPa + Partial pressure O₂
95 kPa - 48 kPa - 24 kPa = Partial pressure O₂
23 kPa = Partial pressure O₂
<em>answer:</em><em> </em><em>option </em><em>d </em><em>(</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>H </em><em>+</em><em>2</em><em>×</em><em>m</em><em>o</em><em>l</em><em>a</em><em>r</em><em> </em><em>mass </em><em>of </em><em>O</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>
I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>