C6H12O6 + 6 O2 --> 6 CO2 + 6 H2O
Answer:
E = 1.602v
Explanation:
Use the Nernst Equation => E(non-std) = E⁰(std) – (0.0592/n)logQc …
Zn⁰(s) => Zn⁺²(aq) + 2 eˉ
2Ag⁺(aq) + 2eˉ=> 2Ag⁰(s)
_____________________________
Zn⁰(s) + 2Ag⁺(aq) => Zn⁺²(aq) + 2Ag(s)
Given E⁰ = 1.562v
Qc = [Zn⁺²(aq)]/[Ag⁺]² = (1 x 10ˉ³)/(0.150)² = 0.044
E = E⁰ -(0.0592/n)logQc = 1.562v – (0.0592/2)log(0.044) = 1.602v
Answer:
water and oceans
Explanation:
the moons creates tides as it goes around the
earth. This creates a bulge on the side of the earth.
https://www.google.com/imgres?imgurl=https%3A%2F%2Fdr282zn36sxxg.cloudfront.net%2Fdatastreams%2Ff-d%253A71e7747b2985faa97dd0428c0d0d35a7a8db33cb6b55e7e3d81da378%252BIMAGE_TINY%252BIMAGE_TINY.1&imgrefurl=https%3A%2F%2Fwww.ck12.org%2Fearth-science%2FTides%2Flesson%2FTides-HS-ES%2F&tbnid=FgLwu9bKOEkJOM&vet=12ahUKEwiO-b61j_XoAhUOq54KHccrCcQQMygIegUIARCXAg..i&docid=EI9-q7wLqid5CM&w=800&h=501&q=moon%20tides%20diagram&ved=2ahUKEwiO-b61j_XoAhUOq54KHccrCcQQMygIegUIARCXAg
Answer:
The speed of the 60.0 kg skater should be 0.281 m/s
Explanation:
<u>Step 1: </u>Data given
Mass of skater 1 = 45.0 kg
speed of skater 1 = 0.375 m/s
Mass of skater 2 = 60.0 kg
<u>Step 2:</u> Calculate the speed of skater 2
To solve this problem, we will use 'Conservation of momenton'. This means the momentum before the push equals the momentum after.
momentum p = m*v
Momentum p(before) = momentum p(after)
m1*v1 = m2 * v2
⇒ with m1 = mass of skater 1 = 45.0 kg
⇒ with v1 = the velocity of skater 1 = 0.375 m/s
⇒ with m2 = the mass of skater 2 = 60.0 kg
⇒ with v2 = the velocity of skater 2 = TO BE DETERMINED
45.0 * 0.375 = 60.0 * v2
v2 = (45.0*0.375)/60
v2 = 0.281 m/s
The speed of the 60.0 kg skater should be 0.281 m/s