I don’t know what the “cheater” way is, however you can easily judge how many valence electrons an element has by looking at its group number on the periodic table.
Bonding in chemistry is completely and totally due to electrons. Every element wants 8 electrons in its outer shell in order to be stable. This is what we call the “Octet Rule”.
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
The law of conservation of mass states that mass or matter cannot be created or destroyed, only transferred or recombined.
For chemical equations, this law means that each element must be accounted for equally both for reactants and products. So the same numbers of each atom must match on each side, hence the necessity for balancing the chemical equation accurately. This created a field of chemistry called Stoichiometry, which accounts for the conservation of matter throughout chemical reactions and processes.
It took 380,000 years for electrons to be trapped in orbits around nuclei, forming the first atoms.
These were mainly helium and hydrogen, which are still by far the most abundant elements in the universe. Present observations suggest that the first stars formed from clouds of gas around 150–200 million years after the Big Bang. Heavier atoms such as carbon, oxygen and iron, have since been continuously produced in the hearts of stars and catapulted throughout the universe in spectacular stellar explosions called supernovae.