The situation is impossible mainly because we can't see Figure P6.10 .
It would undoubtedly be the same story on an another planet, until we
see the figure and understand what's going on.
Answer:
The average acceleration is 16.6 m/s² ⇒ 1st answer
Explanation:
A rocket achieves a lift-off velocity of 500.0 m/s from rest in
30.0 seconds
The given is:
→ The initial velocity = 0
→ The final velocity = 500 meters per seconds
→ The time is 30 seconds
Acceleration is the rate of change of velocity of the rocket
→ 
where a is the acceleration, v is the final velocity, u is the initial velocity
and t is the time
→ u = 0 , v = 500 m/s , t = 30 s
Substitute these values in the rule
→
m/s²
<em>The average acceleration is 16.6 m/s²</em>
This one is also using pre-conventional moral reasoning.
Answer:
497.6 N
Explanation:
From the question,
The net force on the skydiver = weight of the skydiver- the resistive force of air
F' = W-F...................... Equation 1
Where W = weight of the skydiver, F = resistive force of air.
But,
W = mg................ Equation 2
Where m = mass of the skydiver, g = acceleration due to gravity.
Substitute equation 2 into equation 1
F' = mg-F............ Equation 3
Given: m = 87 kg, F = 355 N, g = 9.8 m/s²
Substitute these values into equation 3
F' = 87(9.8)-355
F' = 852.6-355
F' = 487.6 N
Answer:
Explanation:
If you drop a ball from
the top of a building it
gains speed as it falls.
• Every second, its
speed increases by
10 m/s.
• Also it does not fall
equal distances in
equal time intervals
• If the acceleration = 0 then the velocity is
constant. [remember that acceleration is
the rate of change of velocity]
• In this case the distance an object will
travel in a certain amount of time is given
by distance = velocity x time
• For example, if you drive at 60 mph for
one hour you go 60 mph x 1 hr = 60 mi.