We know, speed = Distance / Time
d = 384,750 Km
t = 2 days, 19.5 hours = 48+19.5 = 67.5 hour
Substitute their values,
s = 384,750 / 67.5
s = 5700 Km/h
In short, Your Answer would be 5700 Km/h
Hope this helps!
Answer:
Answered
Explanation:
A) The work done by gravity is zero because displacement and the gravitational force are perpendicular to each other.
W= FS cosθ
θ= 90 ⇒cos90 = 0 ⇒W= 0
B) work done by tension
W= Tcosθ×S= 5cos30×2.30= 10J
C) Work done by friction force
W= f×s=1×2.30= 2.30 J
D) Work done by normal force is Zero because the displacement and the normal force are perpendicular to each other.
E) The net work done= Work done by tension in the rope - frictional work
=10-2.30= 7.7 J
Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
Answer:
h = 50.49 m
Explanation:
Data provided:
Speed of skier, u = 2.0 m/s
Maximum safe speed of the skier, v = 30.0 m/s
Mass of the skier, m = 85.0
Total work = 4000 J
Height from the starting gate = h
Now, from the law of conservation of energy
Total energy at the gate = total energy at the time maximum speed is reached

where, g is the acceleration due to the gravity
on substituting the values, we get

or
170 + 833.85 × h = 4000 + 38250
or
h = 50.49 m
Answer:
E = 3.8 kJ
Explanation:
Given that,
The mass of the object, m = 10 g = 0.01 kg
The heat of fusion of aluminum is 380 kJ/kg
We need to find the energy required to melt the mass of the aluminium. It can be calculated as follows:
E = mL
So,
E = 0.01 × 380
E = 3.8 kJ
So, the energy required to melt the mass is equal 3.8 kJ.