Answer:
8.5m/s
Explanation:
We are given that
Mass of object=m=0.50 kg
Initial velocity, u=0
Force=F=2.88 N
Time=1.48 s
a.We know that

Using the formula



Using the formula


Hence, the velocity of the object at the end of this time interval=8.5m/s
Answer:
Explanation:
Centripetal acceleration's equation is:
where v is the velocity of the object (moon II) and r is the radius. We have the radius, but we don't have the velocity, and we can't solve for acceleration until we do have it. Assuming moon II is a circle, or close enough to be called a circle, it has a circumference.
C = 2πr. If we can find the circumference of the circle, we can plug in the orbital period for the time, the circumference for the distance, and solve for velocity in d = rt. So let's do that and see what happens.
C = 2(3.14)(9.0 × 10⁷) and
C = d = 5.7 × 10⁸. Plugging in and solving for v:
and
v = 1.9 × 10³. That is the velocity we can use in the centripetal acceleration equation.
and

These are fun!
G/mL is equivalent to g/cm^3, so we first convert the dimensions into cm:
2.20 cm, 1.35 cm, and 1.25 cm
Then the total volume is: V = lwh = 3.7125 cm^3
To get the density, we divide mass by volume: 2.50 g / 3.7125 cm^3 = 0.6734 g/cm^3 = 0.6734 g/mL
Field strength = (15 V) / (4 cm)
Field strength = (15 V) / (0.04 meter)
Field strength = (15/0.04) (volts/meter)
<em>Field strength = 375 volts/meter </em>