Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.
Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
Answer:
x = 5.29 m
Explanation:
given,
weight of stretch = 37 N
left-hand spring constant (k₁)= 2.7 N/cm
right hand spring constant(k₂)= 4.3 N/ cm
spring are connected in parallel
F = F₁ + F₂
F = k₁x + k₂x
F = (k₁+ k₂)x
37= (4.3+ 2.7)x
7 x = 37
x = 5.29 m
Answer:
1070 Hz
Explanation:
First, I should point out there might be a typo in the question or the question has inconsistent values. If the tube is 40 cm long, standing waves cannot be produced at 42.5 cm and 58.5 cm lengths. I assume the length is more than the value in the question then. Under this assumption, we proceed as below:
The insert in the tube creates a closed pipe with one end open and the other closed. For a closed pipe, the difference between successive resonances is a half wavelength
.
Hence, we have

.
The speed of a wave is the product of its wavelength and its frequency.


