Unlikely. It's unlikely for ammonium ion
to accept a proton
and act as a Bronsted-Lowry Acid.
<h3>Explanation</h3>
What's the definition of Bronsted-Lowry acids and bases?
- Bronsted-Lowry Acid: a species that can donate one or more protons
in a reaction.
- Bronsted-Lowry Base: a species that can accept one or more protons

Ammonium ions
are positive. Protons
are also positive.
Positive charges repel each other, which means that it will be difficult for
to accept any additional protons. As a result, it's unlikely that
will accept <em>any</em> proton and act like a Bronsted-Lowry Base.
Answer:

Explanation:
Hello.
In this case, since this is a system in which the water is heated up and the metal is cooled down in a calorimeter which is not affected by the heat lose-gain process, we can infer that the heat lost by the metal is gained be water, it means that we can write:

Thus, in terms of masses, specific heats and temperatures we can write:

Whereas the equilibrium temperature is the given final temperature of 28.4 °C and we can compute the specific heat of the metal as shown below:

Plugging the values in and since the density of water is 1.00 g/mL so the mass is 80.0g, we obtain:

Best regards!
Answer: Uranium-235.
Radioactive isotopes are used to determine the age of antique objects, including fossils.
The half-life time of the radioactive elements is what permits the process of dating.
The half-life of C-14 is too short to be useful to date too old objects.
Precambrian time is the most antique era. C-14 hal-life is about 5730 years and Precambrian time is millions or billions of years ago. Given that the hal-life of U-235 is 704 million years it is appropiate to date the fossils from the Precambrian era.
It’s #2 because I saw on edigunity 2020