Work out the number of moles in
100.00 grams of the oxide.
For nitrogen: The atomic mass of N is 14.0067, and we have 36.84 g N:
36.84 g N14.0067 g N/mol N=2.630 mol N
For oxygen: The atomic mass of O is
15.9994, and we have
100.00−36.84=63.16 g O:
63.16 g N 15.9994 g N/mol N=3.948 mol N
Now the ratio 3.958 2.630 is very close to
1.5=32
. So we conclude that the gas has three moles
O to two moles N making the empirical formula
N2O3.
<h2>
<u>Mark as Brainliest</u></h2>
Answer:
Isotope, one of two or more species of atoms of a chemical element with the same atomic number and position in the periodic table and nearly identical chemical behaviour but with different atomic masses and physical properties.
These would be your answers!
(taken from a source)
Follow the scientific method
Keep detailed records
Communicate experimental results
Hope that helped!
:)
Answer: It is very important to know the activity tendencies of the elements. The activity tendencies tells us about whether the element is reactive or not.
In the redox-reaction where there is a need to know the oxidizing agent and reducing agent, we can know it easily from the activity tendencies. The elements lying above the reactivity series are better reducing agents.
In the substitution reactions, the activity tendencies helps us to know which element will replace the other. The element lying above in the series will replace the element lying below it.

where, N is an element that lies above in the reactivity series
M is an element that lies below in the reactivity series