This problem requires a certain equation. That equation is V1/T1=V2/T2, where V1 is your initial volume (535 mL in this case), T1 is your initial temperature in Kelvin(23 degrees C = 296 K), V2 is your final volume (unknown), and T2 is your final temperature (46 degrees C = 319 K). By plugging in these values, the equation looks like this: 535/296=V2/319. Now multiply both sides of the equation by 319, and your final answer is V2= 576.6 mL
To determine whether the amount of H2 in the lab is dangerous, we first need to know how much hydrogen gas is present in the room in units of percent by volume. For this particular problem, we cannot exactly determine since we do not know the total volume of the room. Hope this answers the question.
Answer:
21.5 g.
Explanation:
Hello!
In this case, since the reaction between the given compounds is:

We can see that according to the law of conservation of mass, which states that matter is neither created nor destroyed during a chemical reaction, the total mass of products equals the total mass of reactants based on the stoichiometric proportions; in such a way, we first need to compute the reacted moles of Li3P as shown below:

Now, the moles of Li3P consumed by 15 g of Al2O3:

Thus, we infer that just 0.29 moles of 0.73 react to form products; which means that the mass of formed products is:

Therefore, the total mass of products is:

Which is not the same to the reactants (53 g) because there is an excess of Li₃P.
Best Regards!
Both diamond and graphite are allotropes of carbon. Diamond has a high tensile strength but graphite does not.
<h3>What is a molecular model?</h3>
A molecular model is used to describe the actual behavior of a chemical compound based on the kind of bonds that exists in the molecule. Now we are talking about diamond and graphite.
Graphite is composed of hexagonal rings of carbon atoms that form layers that are held together by weak Van Der Walls forces hence they can slide over each other. This is the reason why graphite does not have a high tensile strength.
On the other hand, diamond is made up of octagonal rings of carbon atoms which are rigid and form a strong covalent network solid that explains why graphite has a high tensile strength.
Learn more about diamond and graphite:brainly.com/question/8853712
#SPJ1
Answer: It's just the Primary planets and the dwarf planets and the sun, The orbit courses, and the gravitational pull that keeps them orbiting.
Explanation: Make me brainliest, please Help me out