<u>Answer:</u> The sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 5730 years
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = ? yr
= initial amount of the sample = 100 grams
[A] = amount left after decay process = (100 - 25) = 75 grams
Putting values in above equation, we get:

Hence, the sample of Carbon-14 isotope will take 2377.9 years to decay it to 25 %
I belive it is synaptic cleft
Answer:
Increasing atomic number - True
Explanation:
The modern table is based on Mendeleev’s table, except the modern table arranges the elements by increasing atomic number instead of atomic mass.
The Atomic number is the number of protons in an atom, and this number is unique for each element. For example, Hydrogen has an atomic number of 1, Calcium has an atomic number of 20.
In the modern periodic table the elements are further arranged into:
- rows, called periods, in order of increasing atomic number. Elements in the same periods have the same number of shells.
- vertical columns, called groups, where the elements have similar properties. Elements in the same group has the same number of valency (outermost number of electrons)
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2