Answer:
1 and 2.
Midpoints calculated, plotted and connected to make the triangle DEF, see the attached.
- D= (-2, 2), E = (-1, -2), F = (-4, -1)
3.
As per definition, midsegment is parallel to a side.
Parallel lines have same slope.
<u>Find slopes of FD and CB and compare. </u>
- m(FD) = (2 - (-1))/(-2 -(-4)) = 3/2
- m(CB) = (1 - (-5))/(1 - (-3)) = 6/4 = 3/2
- As we see the slopes are same
<u>Find the slopes of FE and AB and compare.</u>
- m(FE) = (-2 - (- 1))/(-1 - (-4)) = -1/3
- m(AB) = (1 - 3)/(1 - (-5)) = -2/6 = -1/3
- Slopes are same
<u>Find the slopes of DE and AC and compare.</u>
- m(DE) = (-2 - 2)/(-1 - (-2)) = -4/1 = -4
- m(AC) = (-5 - 3)/(-3 - (-5)) = -8/2 = -4
- Slopes are same
4.
As per definition, midsegment is half the parallel side.
<u>We'll show that FD = 1/2CB</u>
- FD =
=
= 
- CB =
=
= 2
- As we see FD = 1/2CB
<u>FE = 1/2AB</u>
- FE =
=
= 
- AB =
=
= 2
- As we see FE = 1/2AB
<u>DE = 1/2AC</u>
- DE =
=
= 
- AC =
=
= 2
- As we see DE = 1/2AC
2x -3y = 13
4x -y = -9
Multiply the second equation by -3 to make the coefficient of Y opposite the first equation.
4x -y = -9 x -3 = -12x + 3y = 27
Now add this to the first equation:
2x -12x = -10x
-3y +3y = 0
13 +27 = 40
Now you have :
-10x = 40
Divide each side by -10:
x = 40 / -10
x = -4
Now you have a value for x, replace that into the first equation and solve for y:
2(-4) - 3y = 13
-8 - 3y = 13
Add 8 to both sides:
-3y = 21
Divide both sides by -3:
y = 21/-3
y = -7
Now you have X = -4 and y = -7
(-4,-7)
Let s represent the length of any one side of the original square. The longer side of the resulting rectangle is s + 9 and the shorter side s - 2.
The area of this rectangle is (s+9)(s-2) = 60 in^2.
This is a quadratic equation and can be solved using various methods. Let's rewrite this equation in standard form: s^2 + 7s - 18 = 60, or:
s^2 + 7s - 78 = 0. This factors as follows: (s+13)(s-6)=0, so that s = -13 and s= 6. Discard s = -13, since the side length cannot be negative. Then s = 6, and the area of the original square was 36 in^2.
Answer:
Tom's car went further
Step-by-step explanation:
Since there are 100 centimeters in 1 meter - Roberts car went nearly 1 and a half meters or Tom's car went 200 centimeters.