Answer:
Step-by-step explanation:
sin^1(17/19)
x= 63.475 round it how u want
Answer:
n = -10.8
Step-by-step explanation:
Assuming you want to solve for n, all you have to do is isolate the variable by multiplying by both sides of the equation by four. This would leave you with n = -10.8
Answer:
![I=\frac{5}{2}\ln \left ( e^{2x}+13e^x+36 \right )-\frac{13}{2}\left [ \ln (e^x+4)-\ln (e^x+9) \right ]+C](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B5%7D%7B2%7D%5Cln%20%5Cleft%20%28%20e%5E%7B2x%7D%2B13e%5Ex%2B36%20%5Cright%20%29-%5Cfrac%7B13%7D%7B2%7D%5Cleft%20%5B%20%5Cln%20%28e%5Ex%2B4%29-%5Cln%20%28e%5Ex%2B9%29%20%5Cright%20%5D%2BC)
Step-by-step explanation:
To find:
Solution:
Let 
Take 
So,

Here,

![-\frac{65}{2}\int \frac{dt}{t^2+13t+36}=-\frac{65}{2}\int \frac{dt}{t^2+9t+4t+36}\\=-\frac{65}{2}\int \frac{dt}{(t+4)(t+9)}\\=\frac{-65}{2}\left ( \frac{1}{5} \right )\int \frac{1}{t+4}-\frac{1}{t+9}\,dt\\=\frac{-13}{2}\left [ \ln (t+4)-\ln (t+9) \right ]\,\,\left \{ \because \int \frac{dt}{t}=\ln t \right \}](https://tex.z-dn.net/?f=-%5Cfrac%7B65%7D%7B2%7D%5Cint%20%5Cfrac%7Bdt%7D%7Bt%5E2%2B13t%2B36%7D%3D-%5Cfrac%7B65%7D%7B2%7D%5Cint%20%5Cfrac%7Bdt%7D%7Bt%5E2%2B9t%2B4t%2B36%7D%5C%5C%3D-%5Cfrac%7B65%7D%7B2%7D%5Cint%20%5Cfrac%7Bdt%7D%7B%28t%2B4%29%28t%2B9%29%7D%5C%5C%3D%5Cfrac%7B-65%7D%7B2%7D%5Cleft%20%28%20%5Cfrac%7B1%7D%7B5%7D%20%5Cright%20%29%5Cint%20%5Cfrac%7B1%7D%7Bt%2B4%7D-%5Cfrac%7B1%7D%7Bt%2B9%7D%5C%2Cdt%5C%5C%3D%5Cfrac%7B-13%7D%7B2%7D%5Cleft%20%5B%20%5Cln%20%28t%2B4%29-%5Cln%20%28t%2B9%29%20%5Cright%20%5D%5C%2C%5C%2C%5Cleft%20%5C%7B%20%5Cbecause%20%5Cint%20%5Cfrac%7Bdt%7D%7Bt%7D%3D%5Cln%20t%20%5Cright%20%5C%7D)
So,
![I=\frac{5}{2}\int \frac{2t+13}{t^2+13t+36}\,dt-\frac{65}{2}\int \frac{dt}{t^2+13t+36}\\=\frac{5}{2}\ln \left ( t^2+13t+36 \right )-\frac{13}{2}\left [ \ln (t+4)-\ln (t+9) \right ]+C](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B5%7D%7B2%7D%5Cint%20%5Cfrac%7B2t%2B13%7D%7Bt%5E2%2B13t%2B36%7D%5C%2Cdt-%5Cfrac%7B65%7D%7B2%7D%5Cint%20%5Cfrac%7Bdt%7D%7Bt%5E2%2B13t%2B36%7D%5C%5C%3D%5Cfrac%7B5%7D%7B2%7D%5Cln%20%5Cleft%20%28%20t%5E2%2B13t%2B36%20%5Cright%20%29-%5Cfrac%7B13%7D%7B2%7D%5Cleft%20%5B%20%5Cln%20%28t%2B4%29-%5Cln%20%28t%2B9%29%20%5Cright%20%5D%2BC)
C is a constant of integration.
Put 
![I=\frac{5}{2}\ln \left ( e^{2x}+13e^x+36 \right )-\frac{13}{2}\left [ \ln (e^x+4)-\ln (e^x+9) \right ]+C](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B5%7D%7B2%7D%5Cln%20%5Cleft%20%28%20e%5E%7B2x%7D%2B13e%5Ex%2B36%20%5Cright%20%29-%5Cfrac%7B13%7D%7B2%7D%5Cleft%20%5B%20%5Cln%20%28e%5Ex%2B4%29-%5Cln%20%28e%5Ex%2B9%29%20%5Cright%20%5D%2BC)
My understanding is, we have 600 in BM, 300 In Stats = 900.
173 have enrolled in both, so they have been counted twice. We can subtract that from the total, 900-173 = 727 unique students.
Answer:

Step-by-step explanation:
Given
- 
Since both fractions have a common denominator, subtract the numerators leaving the denominator.
= 
= 