1.66 M is the concentration of the chemist's working solution.
<h3>What is molarity?</h3>
Molarity (M) is the amount of a substance in a certain volume of solution. Molarity is defined as the moles of a solute per litres of a solution. Molarity is also known as the molar concentration of a solution.
In this case, we have a solution of Zn(NO₃)₂.
The chemist wants to prepare a dilute solution of this reactant.
The stock solution of the nitrate has a concentration of 4.93 M, and he wants to prepare 620 mL of a more dilute concentration of the same solution. He adds 210 mL of the stock and completes it with water until it reaches 620 mL.
We want to know the concentration of this diluted solution.
As we are working with the same solution, we can assume that the moles of the stock solution will be conserved in the diluted solution so:
=
(1)
and we also know that:
n = M x 
If we replace this expression in (1) we have:
x
=
x 
Where 1, would be the stock solution and 2, the solution we want to prepare.
So, we already know the concentration and volume used of the stock solution and the desired volume of the diluted one, therefore, all we have to do is replace the given data in (2) and solve for the concentration which is
:
4.93 x 210 = 620 x
= 1.66 M
This is the concentration of the solution prepared.
Learn more about molarity here:
brainly.com/question/19517011
#SPJ1
Answer:
1,085g of water
Explanation:
If we have the value 4520kj is because the question is related to Energy and heat capacity. In this case, the law and equation that we use is the following:
Q= m*C*Δt where;
Q in the heat, in this case: 4520kj
m is the mas
Δt= is the difference between final-initial temperature (change of temperature), in this exercise we don´t have temperatura change.
In order to determine the mass, I will have the same equation but finding m
m= Q/C*Δt without m=Q/C
So: m= 4,520J/4.18J/g°C
m= 1,0813 g
Molar mass :
Li₂S = <span>45.947 g/mol
AlCl</span>₃ = <span>133.34 g/mol
</span><span>3 Li</span>₂<span>S + 2 AlCl</span>₃<span> = 6 LiCl + Al</span>₂S₃
3 * 45.947 g Li₂S ----------> 2 * <span>133.34 g AlCl</span>₃
1.084 g Li₂S ----------------> ?
Mass Li₂S = 1.084 * 2 * 133.34 / 3 * 45.947
Mass Li₂S = 289.08112 / 137.841
Mass Li₂S = 2.0972 g
hope this helps!
Answer:
Option B:Publishing scientific journals
Explanation:
We are told that Lindsey is trying to gain credibility for her studies.
Since she completed her experiment and discussed her finding with colleagues, the most logical next step would be to publish scientific journals. This is because the other options given are not steps that should be taken because she has completed the research and therefore has no need to speak at a conference next nor even create new charts which they must have done during the research. No need for her to make sure the topic is popular.
Option B is correct
Answer:

Explanation:
Hello.
In this case, given the heat of fusion of THF to be 8.5 kJ/mol and freezing at -108.5 °C, for the required mass of 5.9 g, we can compute the entropy as:

Whereas n accounts for the moles which are computed below:

Thus, the entropy turns out:

Best regards.