Answer:
Correct answer: A.) V = - 16.6 m/s down
Explanation:
Given:
V₀ = 3 m/s initial velocity
t = 2 seconds
g = 9.8 m/s²
V(t) = V(2) = ?
The movement described is a vertical upward shot
For velocity at any time is valid the next formula
V = V₀ - g · t
V = 3 - (9.8 · 2) = 3 - 19.6 = - 16.6 m/s down
Under condition that it has a enough drop height with respect to the ejection point.
God is with you!!!
<span>Chrissie's behavior is reinforced on a FIXED-RATIO schedule.</span>
Answer: The ball (option A)
Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.
For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)
Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu
For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)
m(v - u) = m(0 - u) = - mu.
-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)
Answer: A 'rogue wave' is large, unexpected, and dangerous.
At the time, surface winds were light at 15 knots. ... Most reports of extreme storm waves say they look like "walls of water." They are often steep-sided with unusually deep troughs.
Explanation: