Answer:
<h3>According to our principle, when an object is slowing down, the acceleration is in the opposite direction as the velocity. Thus, this object has a negative acceleration. In Example D,<u> the object is moving in the negative direction</u> (i.e., has a negative velocity) and is speeding up.</h3>
Explanation:
So it would be decreasing if its moving towards the negative!
Answer:
The acceleration of the crate is
.
Explanation:
Given that,
Force, F = 750 N
Mass of the crate, m = 250 kg
The coefficient of friction is 0.12.
We need to find the acceleration of the crate. The net force acting on the crate is given by :

f is frictional force, 

So, the acceleration of the crate is
. Hence, this is the required solution.
Answer:
A procedure according to the norms.
Explanation:
If possible, proceed to fix the leak in no more than 30 days from the moment it was discovered.
Otherwise, during the first 30 days develop a planification to backfit the leak or, if needed, retire the appliance. This should be executed within one year.
Answer:
8.46 N/C
Explanation:
Using Gauss law

Gauss's Law states that the electric flux through a surface is proportional to the net charge in the surface, and that the electric field E of a point charge Q at a distance r from the charge
Here, K is Coulomb's constant whose value is 
r = 0.43 + 0.106 = 0.536 m

Answer:
The second car must go with a speed of 63.43 m/sec
Explanation:
Speed V of lead car = 62.3 m/sec
Distance S = 55 laps = 55 ×400 meters=22000 m
We know
S = V × t
So,
t= S/V
We put values of S and V here, we get
t=22000/62.3
t= 353.1 sec
So in 353.1 sec the second car which is one lap behind - must go a distance of 55+1=56 laps or 56×400 m = 22400 meters to catch the lead car before it finishes.
i-e for second car
Distance S= 22400m
Time t = 353.1 sec
V= ?
using again
S=Vt
we get
V= S/t
V= 22400/353.1= 63.43 m/sec