Answer:
0.259 kJ/mol ≅ 0.26 kJ/mol.
Explanation:
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 100.0 g).
c is the specific heat of water (c of ice = 4.186 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 21.56°C - 25.0°C = -3.44°C).
<em>∵ Q = m.c.ΔT</em>
∴ Q = (100.0 g)(4.186 J/g.°C)(-3.44°C) = -1440 J = -1.44 kJ.
<em>∵ ΔH = Q/n</em>
n = mass/molar mass = (100.0 g)/(18.0 g/mol) = 5.556 mol.
∴ ΔH = (-1.44 kJ)/(5.556 mol) = 0.259 kJ/mol ≅ 0.26 kJ/mol.
Missing question: Write the net ionic equation for the precipitation reaction that occurs when aqueous solutions of ammonium carbonate and cobalt(II) bromide are combined.<span>Balanced chemical reaction:
(NH</span>₄)₂CO₃(aq) + CoBr₂(aq) → CoCO₃(s) + 2NH₄Br(aq).
Net ionic reaction:
2NH₄⁺(aq) + CO²⁻(aq) + Co²⁺(aq) + 2Br⁻(aq) → CoCO₃ + 2NH₄(aq)+ 2Br(aq).
or CO²⁻(aq) + Co²⁺(aq) → CoCO₃(s).
Pressure is affected by gravity,height, and density since pressure = density×height×gravity .