Reduction <span>always results in a lowering of the oxidation number. The reaction of the system above is written as:
</span><span>Cu2+(aq) + Fe(s) --> Cu(s) + Fe2+(aq)
</span>
From the reaction, we see that copper goes from the +2 to a neutral charge. Lowering of the oxidation number happens so this is the element that is being reduced.
If we dissolve salt in water they will reduce the intermolecular forces between water molecule and this will decrease the surface tension.
Surface tension is due to cohesive forces (the forces between molecules of same substance) hence as cohesive forces decreases the surface tension also decreases
Answer:
1. NaN₃(s) → Na(s) + 1.5 N₂(g)
2. 79.3g
Explanation:
<em>1. Write a balanced chemical equation, including physical state symbols, for the decomposition of solid sodium azide (NaN₃) into solid sodium and gaseous dinitrogen.</em>
NaN₃(s) → Na(s) + 1.5 N₂(g)
<em>2. Suppose 43.0L of dinitrogen gas are produced by this reaction, at a temperature of 13.0°C and pressure of exactly 1atm. Calculate the mass of sodium azide that must have reacted. Round your answer to 3 significant digits.</em>
First, we have to calculate the moles of N₂ from the ideal gas equation.

The moles of NaN₃ are:

The molar mass of NaN₃ is 65.01 g/mol. The mass of NaN₃ is:

The mass percentage is 15.1465%.