Answer:
Step-by-step explanation:
A suitable table or calculator is needed.
One standard deviation from the mean includes 68.27% of the total, so the number of bottles in the range 20 ± 0.16 ounces will be ...
0.6827·26,000 = 17,750 . . . . . within 20 ± 0.16
__
The number below 1.5 standard deviations below the mean is about 6.68%, so for the given sample size is expected to be ...
0.66799·26,000 = 1737 . . . . . below 19.76
_____
<em>Comment on the first number</em>
The "empirical rule" tells you that 68% of the population is within 1 standard deviation (0.16 ounces) of the mean. When the number involved is expected to be expressed to 5 significant digits, your probability value needs better accuracy than that. To 6 digits, the value is 0.682689, which gives the same "rounded to the nearest integer" value as the one shown above.
Answer:
A multiply by 5
Step-by-step explanation:
x/5-12=10
x/5=10+12
x/5=22
multiple each side by 5
x=22*5
0 = 0
The input is an identity: it is true for all values
A=90 degrees divide by 5
=18 degrees
2c+a=90
2c+18=90
2c=90-18
2c=72
divide each side by 2
c=36
therefore:
2c=72
b=4a+c
b=4(18)+36
b=72+36
b=108
A function is differentiable if you can find the derivative at every point in its domain. In the case of f(x) = |x+2|, the function wouldn't be considered differentiable unless you specified a certain sub-interval such as (5,9) that doesn't include x = -2. Without clarifying the interval, the entire function overall is not differentiable even if there's only one point at issue here (because again we look at the entire domain). Though to be fair, you could easily say "the function f(x) = |x+2| is differentiable everywhere but x = -2" and would be correct. So it just depends on your wording really.