Answer:
15.87% probability that a randomly selected individual will be between 185 and 190 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected individual will be between 185 and 190 pounds?
This probability is the pvalue of Z when X = 190 subtracted by the pvalue of Z when X = 185. So
X = 190



has a pvalue of 0.8944
X = 185



has a pvalue of 0.7357
0.8944 - 0.7357 = 0.1587
15.87% probability that a randomly selected individual will be between 185 and 190 pounds
Answer:
1.16ft tall.
Step-by-step explanation:
168/144= 1.16 ft tall
or rounded to the nearest number = 1.20 ft.
Rectangle explanation:I’m doing the same thing
You have to take the percentage of the original price and subtract it to find the reduced price
Answer:
To add or subtract functions, just add or subtract the values at each point where it makes sense. If the functions are given by formulas, you can just add or subtract the formulas (it doesn't matter whether you plug in values before or after).
Step-by-step explanation: