The hydroxide (OH) in the metallic hydroxide will react with the hydrogen in an acid to form H2O. The remaining ions will combine to form a salt. Therefore a metal hydroxide and an acid will form a salt + water.
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
Answer:
200 Joules is the explosive energy in the inside the balloon. And that is
1 lb of TNT.
Explanation:

Volume of the balloon = V = 1 L = 
Pressure inside the balloon ,P= 200,000 Pa =
Explosive energy in the inside the balloon be E.
E = Pressure × Volume

1 lb of TNT = 
200 Joules =
1 lb of TNT
=
1 lb of TNT
Answer:
Option C. 13.5 atm
Explanation:
From the question given above, the following data were obtained:
Pressure of Neon (Pₙₑ) = 4.1 atm
Pressure of Argon (Pₐᵣ) = 3.2 atm
Pressure of nitrogen (Pₙ₂) = 6.2 atm
Total pressure (Pₜ) =?
The total pressure in the container can be obtained by adding the pressure of the individual gases. This is illustrated below:
Pₜ = Pₙₑ + Pₐᵣ + Pₙ₂
Pₜ = 4.1 + 3.2 + 6.2
Pₜ = 13.5 atm
Therefore, the total pressure in the container is 13.5 atm
Answer:
Q = 3440Kj
Explanation:
Given data:
Mass of gold = 2kg
Latent heat of vaporization = 1720 Kj/Kg
Energy required to vaporize 2kg gold = ?
Solution:
Equation
Q= mLvap
It is given that heat required to vaporize the one kilogram gold is 1720 Kj thus, for 2 kg
by putting values,
Q= 2kg × 1720 Kj/Kg
Q = 3440Kj