Answer:
describes properties characteristic of no more than two electrons in the vicinity of an atomic nucleus or of a system of nuclei as in a molecule
A chemical reaction is defined as the reaction between two or more substances that produces new substances/compounds.
On the other hand, a nuclear reaction is a reaction that alters the nucleus of a certain atom. This can be done either by splitting the nucleus or by joining this nucleus with another one.
Reaction 1:
Cl₂ + H₂ ............> 2 HCl
This is the combination of two elements to produce a new compound.
Therefore, this reaction is a chemical reaction
Reaction 2:
²₁H + ³₁H .........> ⁴₂H + ¹₀n
This is an alteration in the nucleus of a hydrogen atom by bonding it with another nucleus.
Therefore, this reaction is a nuclear reaction
Hope this helps :)
Answer ; The question is missing in some details, but here are he details ;
The two naturally occurring isotopes of bromine are
81Br (80.916 amu, 49.31%) and
79Br (78.918 amu, 50.69%).
The two naturally occurring isotopes of chlorine are
37Cl (36.966 amu, 24.23%) and
35Cl (34.969 amu, 75.77%).
Bromine and chlorine combine to form bromine monochloride, BrCl.
Explanation:
The detaile calculation is as shown in the attachment.
Answer:
The total weight of both object is 78.56 kg.
Explanation:
Given data:
Mass of object A = 45.1 kg
Mass of object B = 33.46 kg
Total weight of object = ?
Solution:
Total weight of both subject must be the sum of weight of object A and B.
Total weight of objects = weight of object A + weight of object B
Now we will put the values of mass of object A and B.
Total weight of objects = 45.1 kg + 33.46 kg
Total weight of objects =78.56 kg
Thus the total weight of both object is 78.56 kg.
Answer:
1367.7 g of ethylene glycol was added to the solution
Explanation:
In order to find out the mass of glycol we added, we apply the colligative property of lowering vapor pressure: ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution(P')
525.8 mmHg - 451 mmHg = 451 mmHg . Xm
74.8 mmHg / 451 mmHg = Xm → 0.166 (mole fraction of solute)
Xm = Mole fraction of solute / Moles of solute + Moles of solvent
We can determine the moles of solvent → 2000 g . 1 mol/18 g = 111.1 mol
(Notice we converted the 2kg of water to g)
0.166 = Moles of solute / Moles of solute + 111.1 moles of solvent
0.166 (Moles of solute + 111.1 moles of solvent) = Moles of solute
18.4 moles = Moles of solute - 0.166 moles of solute
18.4 = 0.834 moles of solute → Moles of solute = 18.4/0.834 = 22.06 moles
Let's convert the moles to mass → 62 g/mol . 22.06 mol = 1367.7 g