1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marianna [84]
3 years ago
14

Please find the perimeter and the area of the figure below.

Mathematics
2 answers:
Wewaii [24]3 years ago
7 0

Answer:

Total Composite Area: 5/2π in²

Total Composite Perimeter: 3π + 2 in

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Geometry</u>

  • Diameter: d = 2r
  • Area of a Circle: A = πr²
  • Circumference Formula: C = 2πr

Step-by-step explanation:

<u>Step 1: Define</u>

Radius of Circle ABC = 2 in

Radius of Circle AD = 1 in

<u>Step 2: Find Area</u>

Since the formulas are for use for <em>full </em>circles and we only have semicircles, we need to half the formulas.

We add the 2 composite figures to find the <em>total </em>area.

  1. [Circle AD] Substitute [AC]:                                                                               A = 1/2π(1 in)²
  2. [Circle ABC] Substitute [AC]:                                                                          A = 1/2π(2 in)²
  3. [Total] Combine:                                                                                              A = 1/2π(2 in)² + 1/2π(1 in)²
  4. Exponents:                                                                                                       A = 1/2π(4 in²) + 1/2π(1 in²)
  5. Multiply:                                                                                                           A = 2π in² + 1/2π in²
  6. Add:                                                                                                                  A = 5/2π in²

<u>Step 3: Find Perimeter</u>

Since the formulas are for use for <em>full </em>circles and we only have semicircles, we need to half the formulas.

We add the 2 composite figures to find the <em>total </em>perimeter. Don't forget circumference is only the <em>curve</em> of the circle.

  1. [Circle AD] Substitute [CF]:                                                                               C = 1/2(2π · 1 in)
  2. [Circle ABC] Substitute [CF]:                                                                           C = 1/2(2π · 2 in)
  3. [Total] Combine:                                                                                              C = 1/2(2π · 2in) + 1/2(2π · 1 in) + 2 in
  4. Multiply:                                                                                                           C = 1/2(4π in) + 1/2(2π in) + 2 in
  5. Multiply:                                                                                                           C = 2π in + π in + 2 in
  6. Add:                                                                                                                  C = 3π + 2 in
Gnesinka [82]3 years ago
5 0

Hello!

Area:

\large\boxed{\frac{5}{2}\pi  in^{2}}

Perimeter:

\large\boxed{3\pi  + 2 inch}

We can divide the figure into two semicircles:

One semicircle of radius 2 inch (Arc ABC) and another semicircle of radius 1 inch (Arc AD)

Find the area using the formula for the area of a semicircle:

A = 1/2(πr²)

Find the area for each semicircle:

Arc ABC:

A = 1/2π(2²)

A = 1/2(4π)

A = 2π

Find the area of semicircle AD:

A = 1/2π(1²)

A = 1/2π(1)

A = 1/2π

Add the two areas together:

1/2π + 2π = 5/2π inches squared.

Perimeter:

Use the formula for the circumference of a semicircle:

C = 1/2(2rπ)

Use the equation to solve for the perimeter of each semicircle.

Semicircle ABC:

C = 1/2(2(2)(π))

C = 2π inch

Semicircle AD:

C = 1/2(2(1)(π))

C = 1π inch

There is also a 2 inch segment that must be incorporated, so the total perimeter is:

2π + 1π + 2 = 3π + 2 inches.

You might be interested in
The area of a square is 20 square which best represent the length of the side of the square
mote1985 [20]
5' per side or whatever units it's measured in, because 4x5=20
8 0
3 years ago
Quadrilateral PQRS was translated 5 units to the right and 3 units up to create quadrilateral P 'Q 'R 'S '. Which rule describes
Wittaler [7]

Answer: did you get the answer

Step-by-step explanation: pleasee

6 0
3 years ago
The school you want to go to has an acceptance rate of 12%. That means that 12% of the students who apply to the school get in.
exis [7]
The answer is 20,000.

2,400 Divided by .12 equals 20,000.

2,400 / .12 = 20,000.
3 0
3 years ago
Read 2 more answers
Helllp,??????????????
makkiz [27]
If the first question mark is 3 then the next is 13 than the next still 13 and the right one 26 and then lastly x is equally to 2
Or
3x+9+10x=33
13x+9=33
13x=26
X=2
3 0
3 years ago
Simplify: x'2-9/x'2-3x
N76 [4]

Answer:

this is the answer Hope's it helps

7 0
3 years ago
Other questions:
  • If (x-7) is a factor of 2x^2-11x+k, what is the value of k
    13·1 answer
  • Write 0.731 as a fraction.
    9·2 answers
  • I need help to getting the answerrr
    11·2 answers
  • Which transformations have been applied to the graph of f(x) = x2 to produce the graph of g(x) = –5x2 + 100x – 450? Select three
    6·2 answers
  • What is the sum of X2-3x+7 and 3x2+5X-9
    14·1 answer
  • Which of the following best describes interest as it relates to credit?
    5·2 answers
  • Which equation can be used to find 75 percent of 200? HELPNOWW
    7·2 answers
  • 405.5 divided by 12.5. Step by step
    10·1 answer
  • Which of the following is an algebraic expression that represents the phrase X increased by 20
    10·1 answer
  • What is .63 as a fraction
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!