Answer:
0·95
Explanation:
Given the combined mass of the rider and the bike = 100 kg
Percent slope = 12%
∴ Slope = 0·12
Terminal speed = 15 m/s
Frontal area = 0·9 m²
Let the slope angle be β
tanβ = 0·12
As it attains the terminal speed, the forces acting on the combined rider and the bike must be balanced and therefore the rider must be moving download as the directions of one of the component of weight and drag force will be in opposite directions
The other component of weight will get balance by the normal reaction and you can see the figure which is in the file attached
From the diagram m × g × sinβ = drag force
Drag force = 0·5 × d ×
× v² × A
where d is the density of the fluid through which it flows
is the drag coefficient
v is the speed of the object relative to the fluid
A is the cross sectional area
As tanβ = 0·12
∴ sinβ = 0·119
Let the fluid in this case be air and density of air d = 1·21 kg/m³
m × g × sinβ = 0·5 × d ×
× v² × A
100 × 9·8 ×0·119 = 0·5 × 1·21 ×
× 15² × 0·9
∴
≈ 0·95
∴ Drag coefficient is approximately 0·95
Ans: Kinetic and potential energies are found in all objects. If an object is moving, it is said to have kinetic energy (KE). Potential energy (PE) is energy that is "stored" because of the position and/or arrangement of the object. The classic example of potential energy is to pick up a brick.
Its a very syplel thing devipe it by distance and boom u shude have it
Waves transfer energy but not matter
The surge protector doesn't use energy. The current that carries Energy may pass through it but a good surge protector won't consume any of that energy. It'll just pass through the surge protector. The current that carrys the energy passes through it to be used by devices further on down the line, such as a toaster or a welder. If those devices are using 1.8 kilowatts of power, then that means that 6,480,000 Joules of energy pass through the surge protector in one hour. They all come out the other end and keep going.