The final atmospheric pressure is 
Explanation:
Assuming that the temperature of the air does not change, we can use Boyle's law, which states that for a gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume. In formula,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

where in our problem we have:
is the initial pressure (the atmospheric pressure at sea level)
is the initial volume
is the final pressure
is the final volume
Solving the equation for p2, we find the final pressure:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Refer to the figure shown below.
g = 9.8 m/s², the acceleration due to gravity.
W = mg, the weight of the mug.
θ = 17°, the angle of the ramp.
Let μ = the coefficient of static friction.
The force acting down the ramp is
F = W sin θ = W sin(17°) = 0.2924W N
The normal reaction is
N = W cosθ = W cos(17°) = 0.9563W N
The resistive force due to friction is
R = μN = 0.9563μW N
For static equilibrium,
μN = F
0.9563μW =0.2924W
μ = 0.3058
The frictional force is F = μN = 0.2924W
The minimum value of μ required to prevent the mug from sliding satisfies
the condition
R > F
0.9563μW > 0.2924W
μ > 002924/.9563 = 0.306
Answer:
The frictional force is 0.2924mg, where m = the mass of the mug.
The minimum coefficient of static friction is 0.306
I think its suicidal ideation......
I think
Answer:
go to the link quizzlet it will give you tha answer
Explanation: