Answer:
The biggest factor affecting coastal erosion is the strength of the waves breaking along the coastline. A wave's strength is controlled by its fetch and the wind speed. Longer fetches & stronger winds create bigger, more powerful waves that have more erosive power.
Explanation:
hope it helps !
Answer:
there will be no cracks so the trash won't get stuck
Answer:
About 3 trips
Explanation: if we do 2.5m*1.6m*0.75 it equals to 11000 then we divide that to 11m3 and it gives you 3.6 so it will be about 3 times
Thx
Answer:
b) there must be a component of force parallel to the motion of the object.
Explanation:
We know that work done on a body by an external force is calculated by the formula given below:
W = F.d = Fd Cos θ
where,
W = Work Done by the force on the body
F = Magnitude of force
d = displacement of the body
θ = The angle between the direction of motion of the body and the force applied
It is clear from the formula of the work done, that "F Cosθ" represents the component of the force, that is acting in the direction of motion of the object or parallel to the direction of motion of the object. So, if there is no component of force parallel to motion of object, then this factor will become zero. As a result, the work done will also be zero.
Therefore, the correct option will be:
b) <u>there must be a component of force parallel to the motion of object.</u>
Power = (force) x (distance / time) = force x speed .
We know the force = 800N.
We have a speed = 30km/hr, but in order to use it in the power formula,
it has to be in meters/second, so we have some work to do first.
(30 km/hr) x (1,000 m/km) x (1 hr / 3,600 sec) = 300 / 36 m/sec .
Power = (force) x (speed) = (800 N) x (300/36 m/s) = <em>6-2/3 kilowatts </em>
Work = (power) x (time) = (6,666-2/3 joule/sec) x (25sec) = <em>166,666-2/3 joules</em>.
The figure for power is slightly weird ... 746 watts = 1 horsepower,
so the truck's engine is only delivering about 8.9 horsepower.
Very fuel-efficient, but I don't think they drive trucks that way.