<span>(6.0x10^-22, -1.40x10^-21, 0) kg*m/s
Momentum is a conserved quantity. The total momentum of the system before and after the interactions will not change. So, let's look at the momentum before the interaction.
(3.2x10^-21, 0, 0) kg*m/s and (0,0,0) kg*m/s
After the interaction
(2.6x10^-21, 1.40x10^-21, 0) kg*m/s
and the other proton has to have a momentum that when added to this momentum equal the original value. Since the y and z vectors were initially 0, all we need for the y and x vector values of the result is to negate them. The x vector value will be
3.2x10^-21 - 2.6x10^-21 = 0.6x10^21 = 6.0x10^-22. So the other proton will have a momentum of
(6.0x10^-22, -1.40x10^-21, 0) kg*m/s</span>
Answer:
First you fond the total force the car initialy has which is F=ma so it is 1500 times 8 which leads you to get 12000N then you divide the force of the car by the breaks and the road (4200N) which gives you 2.85 seconds for the car to come to a stop.
Answer:
Potential energy is converted into kinetic energy by a force. For example, when you pick up a rock, you work against gravity to give it some potential energy. And then when you drop it, the gravitational force causes the rock to accelerate towards the ground
Explanation:
Answer:
b. B
Explanation:
Picture B has the smallest peaks among all which henceforth makes the wavelength i.e. distance between two adjacent crests or troughs, small.
Displacement from the center line for minimum intensity is 1.35 mm , width of the slit is 0.75 so Wavelength of the light is 506.25.
<h3>How to find Wavelength of the light?</h3>
When a wave is bent by an obstruction whose dimensions are similar to the wavelength, diffraction is observed. We can disregard the effects of extremes because the Fraunhofer diffraction is the most straightforward scenario and the obstacle is a long, narrow slit.
This is a straightforward situation in which we can apply the
Fraunhofer single slit diffraction equation:
y = mλD/a
Where:
y = Displacement from the center line for minimum intensity = 1.35 mm
λ = wavelength of the light.
D = distance
a = width of the slit = 0.75
m = order number = 1
Solving for λ
λ = y + a/ mD
Changing the information that the issue has provided:
λ = 1.35 * 10^-3 + 0.75 * 10^-3 / 1*2
=5.0625 *10^-7 = 506.25
so
Wavelength of the light 506.25.
To learn more about Wavelength of the light refer to:
brainly.com/question/15413360
#SPJ4